

BS in Data Science and Engineering Program

Alfaisal University, College of Engineering & Advanced Computing

Effective: Fall 2025

Approved: April 2025

Curriculum Structure and Study Plan

The Data Science and Engineering program curriculum is composed of **133** Credit Hours (CRHs) divided as follows:

I. General Education Requirements (30 CRHs)

- 1. Mathematics & Statistics (9 CRHs)
- 2. Basic Sciences (4 CRHs)
- 3. Humanities (14 CRHs)

II. Core Requirements (103 CRHs)

- 1. Software Engineering Courses (87 CRHs)
- 2. College of Engineering & Advanced Computing Courses (4 CRHs)
- 3. Technical Electives (12 CRHs)
- 4. Summer Internship (0 CRHs)

I. General Education Requirements (30 CRHs)

1. Mathematics & Statistics (12 CRHs)

		Credi	it Hours	(CRH	is)	Dro Doquisito	Co- Boquisito
Course Code	Course Code Course-Title		Lect.	Lab	Tut	Course Code	Course Code
MAT 101	Calculus I	3	3	0	1		
MAT 112	Calculus II	3	3	0	0	MAT 101	
MAT 211	Calculus III	3	3	0	0	MAT 112	
MAT 212	Linear Algebra	3	3	0	0	MAT 112	

2. Basic Sciences (4 CRHs)

		Credi	it Hours	(CRH	(s)	Dre Dequisite	Co-
Course Code	Course-Title Total- CRHs Lect. La		Lab	Tut	Course Code	Course Code	
PHU 103	Mechanics and Waves for Engineers	3	3	0	1		MAT 101, PHU 103L
PHU 103 L	Mechanics and Waves for Engineers Lab	1	0	2	0		PHU 103

3. <u>Humanities (14 CRHs)</u>

		Credi	it Hours	(CRH	s)		Co-
Course Code	Course-Title	Total- CRHs	Lect	Lab	Tut	Course Code	Requisite Course Code
ENG 101	University Writing	3	3	0	0		
ENG 222	Technical Writing	3	3	0	0	ENG 101	
ISL 101	Islamic Studies I	2	2	0	0		
ARB 101	Arabic Language and Literature I	2	2	0	0		
GE	General Education Elective I	2	2	0	0		
GE	General Education Elective II	2	2	0	0		

II. Core Requirements (103 CRHs)

1. <u>Software Engineering Courses (87 CRHs)</u>

		Cre	dit Hou	rs (CR	Hs)		Co-
Course Code	Course-Title	Tot al- CR Hs	Lect	Lab	Tut	Pre-Requisite Course Code	Requisite Course Code
SE 100	Programming for Engineers	3	3	0	0		SE 100L
SE 100 L	Programming for Engineers Lab	1	0	2	0		SE 100
SE 120	Object-Oriented Programming I	3	3	0	0	SE 100	SE 120L
SE 120 L	Object-Oriented Programming I Lab	1	0	2	0		SE 120
SE 151	Discrete Mathematics	3	3	0	0	SE 100	
DSE 200	Introduction to Data Science	3	3	0	0	SE 120	DSE 212
SE 201	Introduction to Software Engineering	3	3	0	0	SE 120	
DSE 201	Data Visualization	3	3	0	0	DSE 200	
DSE 212	Probability and Statistics for Engineers	3	3	0	0	MAT 112	

AI 213	Introduction to Artificial Intelligence	3	3	0	0	SE 215	
SE 215	Data Structures	3	3	0	0	SE 120	SE 215L
SE 215 L	Data Structures Lab	1	0	2	0		SE 215
SE 239	Computer Networks	3	3	0	0	EE 210	
SE 252	Database Management Systems	3	3	0	0	SE 215	SE 252L
SE 252 L	Database Management Systems Lab	1	0	2	0		SE 252
SE 254	Operating Systems	3	3	0	0	SE 215	SE 254L
SE 254 L	Operating Systems Lab	1	0	2	0		SE 254
DSE 300	Data Preparation and Feature Design	3	3	0	0	DSE 200, SE 215	
SE 301	Analysis of Algorithms	3	3	0	0	SE 215	
DSE 302	Optimization for Data Science	3	3	0	0	DSE 212, MAT 212	
SE 316	Application Development	3	3	0	0	SE 215	
DSE 320	Data Mining	3	3	0	0	DSE 300	
DSE 322	Big Data and Data Warehousing	3	3	0	0	SE 252	
DSE 323	Cloud Computing in Data Science	3	3	0	0	SE 252	
DSE 324	Social Network Analysis	3	3	0	0	DSE 301	
CSE 330	Introduction to Cybersecurity	3	3	0	0	SE 239	SE 254
AI 347	Introduction to Machine Learning	3	3	0	0	SE 252, SE 254	
SE 400	Theory of Computation	3	3	0	0	SE 151, AI 347	
DSE 401	Optimization Techniques for ML	3	3	0	0	DSE 302, AI 347	
AI 480	Natural Language Processing	3	3	0	0	SE 400	
SE 481	Ethical and Professional Development	1	1	0	0	DSE 495	
DSE 495	Capstone Project I	3	0	6	0	DSE 320, DSE 322, DSE 323	

DSE 496	Capstone Project II	3	0	6	0	DSE 495	
---------	---------------------	---	---	---	---	---------	--

2. College of Engineering & Advanced Computing Courses (4 CRHs)

		Credi	it Hours	(CRH	(s)	Due Deguigite	Co-
Course Code	Course-Title	Total- CRHs Lect Lab Tu		Tut	Course Code	Course Code	
EE 210	Digital Logic Design	3	0	0	0	PHU 103	EE 210L
EE 210 L	Digital Logic Design Lab	1	0	2	0		EE 210

3. Technical Electives (12 CRHs)

Select from the following courses:

		Credi	it Hours	(CRH	(s)		Co-
Course Code	Course-Title	Total- CRHs	Lect	Lab	Tut	Pre-Requisite Course Code	Requisite Course Code
AI 471	Technical Elective 1 (Deep and Reinforcement Learning)	3	3	0	0	AI 347	
DSE 451	Technical Elective 2 (Advanced Databases)	3	3	0	0	SE 252, DSE 322	
DSE 452	Technical Elective 3 (Data Engineering and Pipelines)	3	3	0	0	DSE 320, DSE 322	
DSE 453	Technical Elective 4 (Generative AI and LLM)	3	3	0	0	AI 471	

4. <u>Summer Internship (0 CRHs)</u>

Course Code	Course-Title	Credit Hours (CRHs)	Pre-Requisite Course Code	Co- Requisite Course Code
DSE 390	Software Engineering Summer Internship	0	Department approval	

Typical Study Plan- Data Science and Engineering Program

4-Year Curriculum: 133 Credit Hours Total

Each course below follows the following format:

Course code, Course Title, and Course Credit Hours (Lecture contact hours – Lab contact hours – Tutorial contact hours)

	1 st Year							
Fall	Course Code	Course-Title	CRHs					
	SE 100	Programming for Engineers	3 (3-0-0)					
	SE 100 L	Programming for Engineers Lab	1 (0-2-0)					
	MAT 101 Calculus I							
	PHU 103Mechanics and Waves for Engineers							
	PHU 103 L	Mechanics and Waves for Engineers Lab	1 (0-2-0)					
	ENG 101 University Writing							
	ISL 101 Islamic Studies I							
	GE General Education Elective I							
		Total	10					
		10tai	18					
Spring	Course Code	Course-Title	CRHs					
Spring	Course Code SE 120	Course-Title Object-Oriented Programming I	18 CRHs 3 (3-0-0)					
Spring	Course Code SE 120 SE 120 L	Course-Title Object-Oriented Programming I Object-Oriented Programming I Lab	18 CRHs 3 (3-0-0) 1 (0-2-0)					
Spring	Course Code SE 120 SE 120 L SE 151	Course-Title Object-Oriented Programming I Object-Oriented Programming I Lab Discrete Mathematics	18 CRHs 3 (3-0-0) 1 (0-2-0) 3 (3-0-0)					
Spring	Course Code SE 120 SE 120 L SE 151 MAT 112	I otal Course-Title Object-Oriented Programming I Object-Oriented Programming I Lab Discrete Mathematics Calculus II	18 CRHs 3 (3-0-0) 1 (0-2-0) 3 (3-0-0) 3 (3-0-2)					
Spring	Course Code SE 120 SE 120 L SE 151 MAT 112 EE 210	I otal Course-Title Object-Oriented Programming I Object-Oriented Programming I Lab Discrete Mathematics Calculus II Digital Logic Design	18 CRHs 3 (3-0-0) 1 (0-2-0) 3 (3-0-0) 3 (3-0-2) 3 (3-0-0)					
Spring	Course Code SE 120 SE 120 L SE 151 MAT 112 EE 210 EE 210 L	Course-Title Object-Oriented Programming I Object-Oriented Programming I Lab Discrete Mathematics Calculus II Digital Logic Design Digital Logic Design Lab	18 CRHs 3 (3-0-0) 1 (0-2-0) 3 (3-0-0) 3 (3-0-2) 3 (3-0-0) 1 (0-2-0)					
Spring	Course Code SE 120 SE 120 L SE 151 MAT 112 EE 210 EE 210 L ENG 222	Course-Title Object-Oriented Programming I Object-Oriented Programming I Lab Discrete Mathematics Calculus II Digital Logic Design Digital Logic Design Lab Technical Writing	18 CRHs 3 (3-0-0) 1 (0-2-0) 3 (3-0-0) 3 (3-0-2) 3 (3-0-0) 1 (0-2-0) 3 (3-0-0) 1 (0-2-0) 3 (3-0-0)					

		2 nd Year	
Fall	Course Code	Course-Title	CRHs
	DSE 200	Introduction to Data Science	3 (3-0-0)
	DSE 212	Probability and Statistics for Engineers	3 (3-0-0)
	SE 215	Data Structures	3 (3-0-0)
	SE 215 L	Data Structures Lab	1 (0-2-0)
	SE 239	Computer Networks	3 (3-0-0)
	MAT 211	Calculus III	3 (3-0-0)
	MAT 212	Linear Algebra	3 (3-0-0)
		Total	19
Spring	Course Code	Course-Title	CRHs
	SE 252	Database Management Systems	3 (3-0-0)
	SE 252 L	Database Management Systems Lab	1 (0-2-0)
	SE 254	Operating Systems	3 (3-0-0)
	SE 254 L	Operating Systems Lab	1 (0-2-0)
	DSE 201	Data Visualization	3 (3-0-0)
	AI 213	Introduction to Artificial Intelligence	3 (3-0-0)
	CSE 330	Introduction to Cybersecurity	3 (3-0-0)
	•	Total	17

		3 rd Year	
Fall	Course Code	Course-Title	CRHs
	SE 201	Introduction to Software Engineering	3 (3-0-0)
	DSE 300	Data Preparation and Feature Design	3 (3-0-0)
	SE 301	Analysis of Algorithms	3 (3-0-0)
	DSE 302	Optimization for Data Science	3 (3-0-0)
	SE 316	Application Development	3 (3-0-0)
	ARB 101	Arabic Language and Literature I	2 (2-0-0)
		Total	17
Spring	Course Code	Course-Title	CRHs
	DSE 320	Data Mining	3 (3-0-0)
	AI 347	Introduction to Machine Learning	3 (3-0-0)
	DSE 322	Big Data and Data Warehousing	3 (3-0-0)
	DSE 323	Cloud Computing in Data Science	3 (3-0-0)
	DSE 324	Social Network Analysis	3 (3-0-0)
	1		15

Summer	Course Code	Course-Title	CRHs
	DSE 390	Internship	0
	0		

.1					
4 th Year					
		E			
Fall	Course Code	Course-Title	CRHs		
	SE 400	Theory of Computation	3 (3-0-0)		
	DSE 401	Optimization Techniques for ML	3 (3-0-0)		
	DSE	Technical Elective 1	3 (3-0-0)		
	DSE	Technical Elective 2	3 (3-0-0)		
	DSE 495	Software Engineering Capstone Project I	3 (0-6-0)		
	15				
Spring	Course Code	Course-Title	CRHs		
	AI 480	Natural Language Processing	3 (3-0-0)		
	SE 481	Ethics and Professional Development	1 (3-0-0)		
	DSE	Technical Elective 3	3 (3-0-0)		
	DSE	Technical Elective 4	3 (3-0-0)		
	DSE 496	Software Engineering Capstone Project II	3 (0-6-0)		
	GE	General Education Elective II	2 (2-0-0)		
	15				

Course Descriptions

In this section, we give brief descriptions of courses in the Data Science and Engineering program. Each course below follows the following format:

Course code: Course Title Course credit hours (Lecture contact hours – Lab contact hours – Tutorial contact hours)

Course Description

Prerequisite(s)

Co-requisites

Core Courses

SE 100: Programming for Engineers

The course introduces the students to basic notions of computers and computing and then introduces them to programming starting from abstract ways like flowcharts and pseudocode and finally using a typical programming language. The students will be introduced to the basic concepts of data types and structures, operators, and the different ways of data storage, manipulation, and representation. Emphasis is on problem-solving and structured program design methodologies. Prerequisite(s): None Co-requisites: SE 100L

SE 100 L: Programming for Engineers Lab

This course constitutes the lab component of the Programming for Engineer course (SE 100). The purpose of this lab is to provide hands-on training on programming concepts, technologies and techniques introduced during lectures.

Prerequisite(s): None Co-requisites: SE 100

SE 120: Object-Oriented Programming I

After completing this course, students will be equipped with the necessary skills and tools to write programs in Java based on a procedural and object-oriented approach. Topics of focus will include basic Java programming, conditional statements, strings, iteration, methods, arrays, creating classes, encapsulation, inheritance and polymorphism, abstract classes, packages, principles of object-oriented design, as well as exceptions and interfaces.

Prerequisite(s): SE 100 Co-requisites: SE 120L

SE 120 L: Object-Oriented Programming I Lab

This course constitutes the lab component of the Object-Oriented Programming I course (SE 120). The purpose of this lab is to provide hands-on training on the basics of Java and advanced object-oriented programming. Topics covered include data types and operators, logical expressions, control structures, methods, arrays, inheritance; polymorphism; abstract classes and interfaces. be covered. Prerequisite(s): None Co-requisites: SE 120

1 (0-2-0)

3 (3-0-0)

1 (0-2-0)

SE 151: Discrete Structures for Software Engineers

This course covers the mathematical elements of computer science including formal logic, propositional logic, predicate logic, logic in mathematics, sets, functions and relations, recursive thinking, mathematical induction, counting, combinatorics, algorithms, matrices, graphs, trees, and Boolean logic. Students will learn to recognize and express mathematical ideas graphically, numerically, symbolically, and in writing.

Prerequisite(s): SE 100

DSE 200: Introduction to Data Science

This course covers the mathematical elements of computer science including formal logic, propositional logic, predicate logic, logic in mathematics, sets, functions and relations, recursive thinking, mathematical induction, counting, combinatorics, algorithms, matrices, graphs, trees, and Boolean logic. Students will learn to recognize and express mathematical ideas graphically, numerically, symbolically, and in writing.

Prerequisite(s): SE 120 Co-requisites: DSE 212

DSE 201: Data Visualization

This course covers the mathematical elements of computer science including formal logic, propositional logic, predicate logic, logic in mathematics, sets, functions and relations, recursive thinking, mathematical induction, counting, combinatorics, algorithms, matrices, graphs, trees, and Boolean logic. Students will learn to recognize and express mathematical ideas graphically, numerically, symbolically, and in writing.

Prerequisite(s): DSE 200

SE 201: Introduction to Software Engineering

This course is designed to present students with several principles relevant to Software Engineering. Students will gain insights into various software process models throughout the course. The curriculum strongly emphasizes the agile software development approach, highlighting the importance of adaptability and collaborative teamwork. Students will acquire knowledge and skills in requirements engineering. The course covers systems modeling and project management strategies. It addresses the value of software reuse and introduces students to human computer interaction and software testing. The final segment of the course focuses on configuration management. Prerequisite(s): SE 120

DSE 212: Probability and Statistics for Engineers

The course is designed to teach students the basics of probability and statistics as used in engineering and the sciences. The course covers introduction to probability theory, random variables, statistics, and regression.

Prerequisite(s): MAT 112

AI 213: Introduction to Artificial Intelligence

This course introduces students to the fundamental concepts, techniques, and tools used in artificial intelligence (AI). Topics include perception, reasoning, learning, and search algorithms (informed and uninformed). Students will gain skills in applying AI techniques to real-world problems. Prerequisite(s): SE 215

3 (3-0-0)

3 (3-0-0)

3 (3-0-0)

3 (3-0-0)

3 (3-0-0)

SE 215: Algorithms and Data Structures

The course involves the study of important data structures and sorting methods commonly encountered in object-oriented software engineering. It covers the design, performance analysis, and implementation of the related algorithms, stressing their practical use and performance.

Prerequisite(s): SE 120 Co-requisites: SE 215L

SE 215 L: Algorithms and Data Structures Lab

Survey of important computer algorithms and related data structures used in object-oriented software engineering. Design, performance analysis and implementation of such algorithms, stressing their practical use and performance certification of large software applications. Understand how to "seal" designs to guarantee performance goals and ensure that all error conditions are caught. Laboratory experiments dealing with Algorithms and Data Structures.

Prerequisite(s): None Co-requisites: SE 215

SE 239: Computer Networks

The course teaches the fundamental concepts of communication networks and is concerned specifically with network architectures and protocols. The objective of the course is to allow students to develop a thorough understanding of the architectures of networks and the basic principles and protocols that allow the transmission of data over networks.

Prerequisite(s): EE 210

SE 252: Database Management Systems

The focus is to teach database fundamentals required in the development and evolution of most software applications by providing a basic introduction to the principles of relational database management systems such as Entity-Relationship approach to data modeling, relational model of database management systems and the use of query languages. Prerequisite(s): SE 215

Co-requisites: SE 252 L

SE 252 L: Database Management Systems Lab

Laboratory experiments dealing with database management systems. Prerequisite(s): None Co-requisites: SE 252

SE 254: Operating Systems

Theory and construction of operating systems, including real-time and embedded systems aspect from an engineering point of view, stressing performance measurement and metrics. Quality of Service issues leading to certification that an operating system will satisfy hard real-time constraints. Prerequisite(s): SE 215 Co-requisites: SE 254 L

SE 254 L: Operating Systems Lab

Laboratory experiments dealing with Operating Systems. Prerequisite(s): None Co-requisites: SE 254

1 (0-2-0)

3 (3-0-0)

3 (3-0-0)

3 (3-0-0)

3 (3-0-0)

1(0-2-0)

1 (0-2-0)

DSE 300: Data Preparation and Feature Design

This course delves into the critical preprocessing steps required to convert raw data into meaningful formats for analysis. Students will learn techniques for handling missing data, detecting outliers, scaling features, and encoding categorical variables. The course also emphasizes feature engineering and selection strategies to improve the performance of machine learning models. Through practical exercise. Prerequisite(s): SE 215, DSE 200

SE 301: Analysis of Algorithms

This course examines the design and analyses algorithms with an emphasis on their application in real world environments. Topics include time complexity, space complexity, and optimization strategies for various algorithms. Students will gain experience with sorting, searching, and graph algorithms, as well as dynamic programming techniques. Special focus will be placed on algorithmic problem-solving in real world environments.

Prerequisite(s): SE 215

DSE 302: Optimization for Data Science

This course delves into the critical preprocessing steps required to convert raw data into meaningful formats for analysis. Students will learn techniques for handling missing data, detecting outliers, scaling features, and encoding categorical variables. The course also emphasizes feature engineering and selection strategies to improve the performance of machine learning models. Through practical exercise. Prerequisite(s): DSE 212, MAT 212

SE 316: Application Development

This course covers the principles of applications deployed on different platforms such as mobiles, web, and cloud. Students will explore different development environments, and understand concepts from memory management, user interface design, GPS, and motion sensing. Multiple programming languages will be explored such as markup languages (e.g., XHTML, XML), scripting languages (e.g., JavaScript, PHP, Ruby), Ajax, web services, and database integration (e.g., MySQL). Through project-based learning, students will develop professional-quality applications for real-world deployment. Prerequisite(s): SE 215

DSE 320: Data Mining

Data mining focuses on extracting meaningful patterns and knowledge from large datasets. This course covers foundational data mining techniques such as association rule mining, clustering, and classification. Emphasis is placed on understanding the theoretical concepts behind these methods while applying them to practical scenarios. Students will explore tools and libraries used for data mining tasks and tackle projects that simulate real-world applications. Prerequisite(s): DSE 300

DSE 322: Big Data and Data Warehousing

Big data is transforming industries by enabling the analysis of massive datasets. This course focuses on the architecture, tools, and methodologies used in big data analytics and data warehousing. Students will learn about distributed systems like Hadoop and Spark, as well as the principles of data warehousing design and implementation.

Prerequisite(s): SE 252

3 (3-0-0)

3 (3-0-0)

3 (3-0-0)

3 (3-0-0)

3 (3-0-0)

DSE 323: Cloud Computing in Data Science

This course explores the role of cloud computing in data science, including scalable data storage, distributed computing, and cloud-based machine learning. Students will gain hands-on experience with cloud platforms like AWS and Google Cloud to execute data science workflows efficiently. Prerequisite(s): SE 252

DSE 324: Social Network Analysis

Social networks represent complex relationships and interactions. This course introduces students to methods for analysing social networks, including graph theory, community detection, and influence propagation. Applications in marketing, public health, and communication studies are highlighted. Prerequisite(s): DSE 301

CSE 330: Introduction to Cybersecurity

This course provides an overview of core cybersecurity concepts, emphasizing the fundamental principles, tools, and procedures used to secure information systems. Students will employ the CIA triad as a guiding framework, explore prevalent threats, and examine various information security solutions. The course focuses on security and risk management, business impact analysis (BIA), asset security, vulnerabilities, threats and countermeasures, identity and authentication management, incident response and BCP/DRP, as well as key compliance and regulatory issues. By the end of the course, students will have broad, practical knowledge of cybersecurity, including the ability to identify security risks, implement effective defensive measures, and approach cybersecurity challenges with strategic thinking.

Prerequisite(s): SE 239, SE 254

AI 347: Introduction to Machine Learning

This course introduces machine learning with a practical approach covering some of the most common learning models, algorithms, tools, and techniques. From supervised learning, it covers linear regression, logistic regression, and neural networks. From unsupervised learning, it covers Kmeans clustering, dimensionality reduction (principal component analysis), and anomaly detection. The course also discusses practical aspects considered when applying machine learning: data visualization, model selection, flow, model evaluation (testing, validation, overfitting, underfitting, bias, variance), regularization, and large-scale machine learning.

Prerequisite(s): SE 252, SE 254

AI 360: Agent Based Systems

This course introduces machine learning with a practical approach covering some of the most common learning models, algorithms, tools, and techniques. From supervised learning, it covers linear regression, logistic regression, and neural networks. From unsupervised learning, it covers Kmeans clustering, dimensionality reduction (principal component analysis), and anomaly detection. The course also discusses practical aspects considered when applying machine learning: data visualization, model selection, flow, model evaluation (testing, validation, overfitting, underfitting, bias, variance), regularization, and large-scale machine learning.

Prerequisite(s): SE 215, SE 239

3 (3-0-0)

3 (3-0-0)

3 (3-0-0)

3 (3-0-0)

DSE 390: Software Engineering Summer Internship

An internship is an important aspect of the DSE curriculum that provides the student with hands-on experience and a good sense of what an actual job in an organization will be like. Students are required to join an IT department in a government or private organization for a summer period of at least 8 weeks in the last summer prior to student graduation. Students should be able to relate the internship experience to the knowledge that he or she has gained through the DSE program courses. Prerequisite(s): Department approval

SE 400: Theory of Computation

This course introduces fundamental concepts in the theory of computation. Students will be introduced to formal languages, automata, computability and computational complexity. These include finite automatons, Turing machines, grammars, decidable problems, reductive procedures and different kinds of computational problems. The course aims to explore these theoretical concepts to apply on practical issues of interest to software engineering, data science, and AI, for instance, natural language processing, algorithmic development and evaluation of computational efficiency. By the end of this course, students will be able to assess the performance bounds of computing models and their applicability towards modern computing problems.

Prerequisite(s): SE 151, AI 347

DSE 401: Optimization Techniques for ML

This course delves into advanced optimization methods used in machine learning, such as convex optimization, stochastic gradient descent, and optimization under constraints. Students will apply these techniques to improve machine learning model performance, focusing on real-world challenges in tuning and scalability.

Prerequisite(s): DSE 302, AI 347

DSE 401: Optimization Techniques for ML

This course delves into advanced optimization methods used in machine learning, such as convex optimization, stochastic gradient descent, and optimization under constraints. Students will apply these techniques to improve machine learning model performance, focusing on real-world challenges in tuning and scalability.

Prerequisite(s): DSE 302, AI 347

AI 480: Natural Language Processing

This course introduces the concepts and techniques used in natural language processing (NLP), including text preprocessing, word embeddings, and language models. Students will explore applications such as sentiment analysis, machine translation, and chatbot development. Projects focus on using modern NLP libraries and frameworks to solve practical challenges. Prerequisite(s): SE 400

Flerequisite(s). SE 400

SE 481: Ethics for Engineers

This course will explore the effects of technology on society. Especially the ethical questions that arise when technology interacts with humans. Topics will include secrecy of data, privacy issues, legal obligations, and protecting the society by limiting the reach of technology. Prerequisite(s): DSE 495

(0 CRHs)

3 (3-0-0)

3 (3-0-0)

3 (3-0-0)

3 (3-0-0)

1 (1-0-0)

DSE 495: Capstone Project I

This course focuses on the principles and applications of generative AI, including Generative Adversarial Networks (GANs) and Large Language Models (LLMs). Students will explore cutting edge techniques in generating synthetic data, text, and images. Applications in creative industries and ethical considerations are also discussed.

Prerequisite(s): DSE 320, DSE 322, DSE 323

DSE 496: Capstone Project II

Building on the groundwork laid in CSE 495, this course focuses on implementing and completing the capstone project. Students will execute their proposed solutions. Teams will utilize industry standard tools and techniques to develop a functional prototype or system. The course culminates with a comprehensive project report and a formal presentation to faculty and/or industry stakeholders, demonstrating the ability to tackle complex, real-world problems with data-driven strategies. Emphasis is placed on teamwork, project management, and effective communication of findings. Prerequisite(s): DSE 495

Technical Elective Courses

AI 471: Technical Elective 1 (Deep and Reinforcement Learning)

This course provides an in-depth understanding of neural networks, deep learning architectures, and reinforcement learning algorithms. Topics include convolutional networks, recurrent networks, Q-learning, and policy gradients. Students will implement models to solve tasks such as image recognition, game playing, and robotics. Prerequisite(s): AI 347

DSE 451: Technical Elective 2 (Advanced Databases)

This course introduces students to expert systems in general and to rule-based systems in specific. Students learn how to build a rule-based expert system in a variety of application areas. They also learn advanced programming techniques which include topics of inexact reasoning, intelligent database management methods, and how to develop a community of expert systems. Students are also given the opportunity to demonstrate their understanding of the technology by building a rule-based expert system that addresses a real-world problem.

Prerequisite(s): SE 252, DSE 322

DSE 452: Technical Elective 3 (Data Engineering and Pipelines)

This course focuses on designing and implementing robust data pipelines to automate the flow of data from diverse sources. Students will learn about ETL (Extract, Transform, Load) processes, real-time data streaming, and frameworks like Apache Airflow and Kafka. Practical projects simulate building scalable and efficient pipelines for enterprise-level applications. Prerequisite(s): DSE 320, DSE 322

DSE 453: Technical Elective 4 (Generative AI and LLM)

This course introduces students to expert systems in general and to rule-based systems in specific. Students learn how to build a rule-based expert system in a variety of application areas. They also learn advanced programming techniques which include topics of inexact reasoning, intelligent database management methods, and how to develop a community of expert systems. Students are also given the opportunity to demonstrate their understanding of the technology by building a rule-based expert system that addresses a real-world problem.

Prerequisite(s): AI 471

3 (0-6-0)

3 (0-6-0)

3 (3-0-0)

3 (3-0-0)

3 (3-0-0)

